Numerical Analysis and Scientific Computing Preprint Seria Optimization of plane wave directions in plane wave Discontinuous Galerkin methods for the Helmholtz equation

نویسندگان

  • A. Agrawal
  • R. H. W. Hoppe
  • AKSHAY AGRAWAL
  • RONALD H. W. HOPPE
چکیده

Recently, the use of special local test functions other than polynomials in Discontinuous Galerkin (DG) approaches has attracted a lot of attention and became known as DG-Trefftz methods. In particular, for the 2D Helmholtz equation plane waves have been used in [10] to derive an Interior Penalty (IP) type Plane Wave DG (PWDG) method and to provide an a priori error analysis of its p-version with respect to equidistributed plane wave directions. However, the dependence on the distribution of the plane wave directions has not been studied. In this contribution, we study this dependence by formulating the choice of the directions as an optimal control problem with a tracking type objective functional and the variational formulation of the PWDG method as a constraint. The necessary optimality conditions are derived and numerically solved by a projected gradient method. Numerical results are given which illustrate the benefits of the approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plane Wave Discontinuous Galerkin Methods for the 2D Helmholtz Equation: Analysis of the p-Version

Plane wave discontinuous Galerkin (PWDG) methods are a class of Trefftz-type methods for the spatial discretization of boundary value problems for the Helmholtz operator −∆− ω, ω > 0. They include the so-called ultra weak variational formulation from [O. Cessenat and B. Després, SIAM J. Numer. Anal., 35 (1998), pp. 255–299]. This paper is concerned with the a priori convergence analysis of PWDG...

متن کامل

Plane Wave Discontinuous Galerkin Methods : Analysis of The

We are concerned with a finite element approximation for time-harmonic wave propagation governed by the Helmholtz equation. The usually oscillatory behavior of solutions, along with numerical dispersion, render standard finite element methods grossly inefficient already in medium-frequency regimes. As an alternative, methods that incorporate information about the solution in the form of plane w...

متن کامل

Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations

In this paper, we extend to the time-harmonic Maxwell equations the p–version analysis technique developed in [R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011), 264-284] for Trefftz-discontinuous Galerkin approximations of the Helmholtz problem. While error estimates in a me...

متن کامل

Schwarz Domain Decomposition Preconditioners for Plane Wave Discontinuous Galerkin Methods

We construct Schwarz domain decomposition preconditioners for plane wave discontinuous Galerkin methods for Helmholtz boundary value problems. In particular, we consider additive and multiplicative non-overlapping Schwarz methods. Numerical tests show good performance of these preconditioners when solving the linear system of equations with GMRES.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016